Permeability is the quality of a material that tells us the ease with which that material will allow any given fluid to pass through it. Let’s say, we want to flow water through two materials, call them material A and material B, permeability is one concept we can use to measure just how easy it will be for the water to flow through each of the materials. When these two materials are rocks, permeability helps us measure how easy it is for that rock to permit flow of fluid through its pores.

What makes one rock more permeable than another?

A porous rock is one that has pores wide enough to accept fluids, no matter how small the volume of fluids it accepts is. But, in the oil and gas industry, we are not only concerned in how much fluid the rock allows into its pores, we are also concerned in how easy it will be for this rock to release these fluids from its pores when we need it to. This is where permeability comes in.

There are a number of factors that can make one rock to release the fluids in its pores more readily and faster than another. One of them is ‘pore interconnectivity’. After we know how much pores are available, we need to know how much of these pores are interconnected. Pores must be so interconnected with one another that fluid flows easily throughout the rock from one end to the other. Rocks with more interconnectivity are usually more permeable than rocks with pores that are closed from one another by rock grains or any other solid precipitate.

This leads to another factor known as ‘sorting’. A poorly sorted rock will have its grains scattered all around the entire rock matrix (the entire rock volume comprising both the pores and the grains). When grains are scattered this way, some grains may find themselves in positions where they are blocking pore spaces that fluids will have naturally passed through. Sometimes, these poorly positioned grains may partially close the pathway, making the fluid struggle to find a way to squeeze through any space it can find or at other times, the grains may entirely block the pathway. Any fluid that comes this way is trapped and cannot flow through. A well sorted rock has its grains having almost the same size and well positioned, so the issue of a small grain in between bigger grain blocking pathways is reduced to the barest. This is why a well sorted rock will be more permeable than one that is poorly sorted.

Let’s consider another factor, and then we’ll leave it off at that. Since we need our fluid to flow out of a rock as easily as it flowed in, the size of the pore plays a crucial role in this, the bigger the size of the interconnected pore spaces, the better.

Grasping the Concept of Rock Permeability

Now, when rocks were deposited, they were deposited in layers, with one layer lying on top of the other. Remember that we find our reservoirs in deep underground rocks. Meaning that over time, the rock layers on top would have compressed the reservoir rock as much as possible under pressure thereby reducing the volume occupied by the rock matrix. So depending on how much pressure is exerted on the reservoir rock, the permeability varies from one reservoir to another. Tight sands and other fine-grained sedimentary rocks have undergone tremendous amount of pressure from overlying rocks ultimately reducing their pore volume and even grain volume. This is why tight sands have very little permeability compared to conventional reservoir rocks. So the tighter the rocks are packed, usually due to pressure, the smaller the pore throat or pore size and the less permeable the rock will be.

What is absolute permeability?

We know that permeability helps us measure how easy it is for that rock to permit flow of fluid through its pores. Now, to fully understand this, let’s take a look at absolute permeability.

Now, imagine being given one rock sample and three fluid samples (oil, water and gas). To understand the permeability of the rock sample for each of the 3 fluids, we decide to pass each fluid one at a time through the rock sample, after which we clean and dry the rock sample and get it ready for another fluid.

We can start with water, now we pass only water through the entire rock sample from one end to the other and measure how easy it is for the water to flow out of the rock sample. Like we agreed, we then clean and dry the rock sample and then test for oil and also for natural gas. What we just did for each of the fluids is determining the absolute permeability for each fluid. When only one kind of fluid fully saturates a rock, then the permeability of the rock to that fluid is the absolute permeability. In other words, the pores of the rock are absolutely or 100% filled with only one fluid and hence the permeability of the rock at this time is the absolute permeability to that particular fluid.

How is effective permeability different from absolute permeability?

Absolute permeability is great when carrying our laboratory tests on rock samples, but it is not always the case in reality. In the reservoir, we usually find two or more fluids sharing the available pore spaces of the rock. For instance, the reservoir may be an oil reservoir but with some connate water occupying some of the rock pores, so we have oil and water occupying the pores. At other times, it could be gas and water or even all three (oil, water and gas) actively present in the rock pores of the reservoir. So under typical reservoir conditions, we talk about effective permeability and relative permeability. To understand these new concepts, let’s head back to our experiment. We’ll be using the same rock sample but this time instead of passing one fluid at a time, we pass all three fluids (oil, water, and gas) at one end.

So we’ll end up repeating this experiment three times, but then we focus on one particular fluid each time. So when we pass all three fluids into the rock sample the first time, we can focus on the oil and measure the ease of flow of the oil through the rock sample right in the presence of water and gas. We then repeat this same experiment and test for water, measuring how the permeability of the water in the presence of oil and gas, then finally we do the same for the gas in the presence of water and oil all flowing in the rock pores. The permeability we just obtained for each fluid in the presence of other fluids is the effective permeability of the rock to that fluid. So with effective permeability, all the fluids compete for the available pore spaces and the one that’s most permeable will flow easier and faster through the rock pores than others.


Grasping the Concept of Rock Permeability

Permeability is one of the most important concepts in the oil and gas industry. The knowledge of permeability is useful from discovery all the way until well abandonment. It guides when making recovery strategies. Right from primary recovery to tertiary recovery (if necessary), permeability will be a requisite ingredient when making depletion strategies. Absolute permeability is normally not important because almost all the time, we will be dealing with more than one fluid within the rock pores. A rock with huge hydrocarbon deposits and low permeability will have to be stimulated to open up the pores and artificially create pore inter connectivity.